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Presentation Outline

6/23/20Los Alamos National Laboratory

• Description of Pagosa and 
Shaped Charge

• Running Pagosa on HPE 
Apollo 80 A64FX node

• Performance limitations
• Role of Compilers
• Code refactoring to improve 

performance
• Compare to other Processor 

types
• Conclusions
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Pagosa

Los Alamos National Laboratory

• 3 dimensional, multi-material shock wave physics code
• Uses a structured cartesian mesh
• Explicit finite difference method in the Eulerian frame used to solve 

equations of motion, etc.
• Material equations-of-state (EOS) can be evaluated analytically or via 

tabular lookup 
• Written in Fortran (F2003), makes extensive use of array syntax and 

Fortran intrinsics
• Parallelism – MPI only
• Uses OpenMP for GPU offload (not subject of this talk)
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Running Pagosa on Apollo 80 A64FX node

Los Alamos National Laboratory

• One socket of A64FX with 48-cores with 4 numa nodes (CMGs)
• ARMv8.2-A+SVE SIMD width of 512-bits
• 32GBs of HBM2 memory (8 GB/CMG), no L3 cache, one L2 cache 

per CMG

• Shaped Charge problem with 25-materials
• 1 mm resolution, 3D cartesian mesh
• Mixture of analytic and tabular equations-of-state
• Typical of actual user problems

• Compilers:
• CCE 10.0.2
• ARM 20.2.1
• GNU 10.2.0
• Fujitsu 4.5.0 (only recently obtained)
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Performance Limitations

Los Alamos National Laboratory

• Coded largely in Fortran array-syntax
• Difficult for compilers to optimize well
• Each array-syntax statement implies operations and bandwidth

• Depending on mesh size, data is streaming to and from LLC or 
memory

• In the case of A64FX, data will stream from HBM2

• A64FX stats for CCE built version (from CrayPat):
• 70.7% of instructions had backend stalls
• 24.1% of instructions were SIMD
• IRC of 0.56 (seen this for a variety of codes on A64FX)
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Fortran Array-Syntax Patterns in Pagosa 
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real, dimension(0:mx,0:my,0:mz):: a,b,c,d,e
a = b * c
d = a + e

do k = 0, mz
do j = 0, my

do i = 0, mx
a(i,j,k) = b(i,j,k) * c(i,j,k)

enddo
enddo

enddo
do k = 0, mz

do j = 0, my
do i = 0, mx  ! reuse “a” from where?

d(i,j,k) = a(i,j,k) + e(i,j,k)
enddo

enddo
enddo

Semantically equivalent to



Fortran Array-Syntax Patterns in Pagosa 
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do k = 0, mz
do j = 0, my

do i = 0, mx
a(i,j,k) = b(i,j,k) * c(i,j,k)
d(i,j,k) = a(i,j,k) + e(i,j,k)

enddo
enddo

enddo

- What should a compiler do to improve performance?

- If compiler fuses all 3-loops, “a” can be reused from a vector register 
instead of memory or cache



Fortran Array-Syntax Patterns in Pagosa 
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do i = 0, (mx+1)*(my+1)*(mz+1)
a(i,0,0) = b(i,0,0) * c(i,0,0)
d(i,0,0) = a(i,0,0) + e(i,0,0)

enddo

If the compiler can collapse the loops into a single loop-nest:

- reduces loop-overhead
- improves vector efficiency, esp with strong scaling
- CCE does extensive loop-collapse in Pagosa, Fujitsu less so



Role of Compilers on A64FX 

Los Alamos National Laboratory

• Why CCE and Fujitsu compilers generate so much better code than ARM 
compiler (1.9x faster for CCE, 1.7 times faster for Fujitsu)

• Both compilers are better at vectorization overall than ARM LLVM, and 
• CCE:

• Significant fusion of array-syntax statements
• More Vectorization of loops/array-syntax
• Loop-collapse
• 512-bit fixed style of vector-code

• Fujitsu:
• Avoid branch prediction using predication for SVE ops
• Software pipeliner (not sure about this yet)
• Loop Fissioning (not sure about this yet)

• ARM compiler does:
• Limited fusion of array-syntax statements
• Much less vectorization
• no loop-collapse
• Vector-length-agnostic (VLA) vector-code
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Example of CCE optimization for Array-Syntax 
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Key: V – vectorized, f – loop-fusion, C – loop-collapse

52.    fVC----<>    Tmp1(:,:,:) = (Grad(:,:,:,1,1) + Grad(:,:,:,2,2) + Grad(:,:,:,3,3))
53.
54.    f------<>       dA(:,:,:) = (Grad(:,:,:,1,1) - Tmp1(:,:,:)) * dt
55.    f------<>       dB(:,:,:) = (Grad(:,:,:,2,2) - Tmp1(:,:,:)) * dt
56.    f------<>       dC(:,:,:) = (Grad(:,:,:,3,3) - Tmp1(:,:,:)) * dt
57.    f------<>       dD(:,:,:) = (.5 * (Grad(:,:,:,1,2) + Grad(:,:,:,2,1))) * dt
58.    f------<>       dE(:,:,:) = (.5 * (Grad(:,:,:,1,3) + Grad(:,:,:,3,1))) * dt
59.    f------<>       dF(:,:,:) = (.5 * (Grad(:,:,:,2,3) + Grad(:,:,:,3,2))) * dt
60.
61.    f------<>       W1(:,:,:) = (Grad(:,:,:,1,2) - Grad(:,:,:,2,1)) * dt2
62.    f------<>       W2(:,:,:) = (Grad(:,:,:,1,3) - Grad(:,:,:,3,1)) * dt2
63.    f------<>       W3(:,:,:) = (Grad(:,:,:,2,3) - Grad(:,:,:,3,2)) * dt2



Compare A64FX to other node types 

Los Alamos National Laboratory

• AMD Rome with 2-sockets/node and 128-cores of AVX2
• Using 4 compilers: CCE, Intel, AOCC, and GNU

• Intel Xeon Cascade Lake with 2-sockets/node and 48-cores of 
AVX512

• Using Intel and GNU compilers

• Intel Xeon Ice Lake with 2-sockets/node and 48-cores of AVX512
• Using Intel and GNU compilers
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Could source changes help performance? 

Los Alamos National Laboratory

• Version 1:
• Take selected array-syntax statements and recode as loops

• Kernels from routines high in profile
• Manual loop-fusion of recoded loops to get data reuse
• To make up for compiler optimization NOT doing it

• Version 2:
• Manually inline most expensive routines into the calling routine
• Manually fuse loops from these routines into single, more compute 

intensive loops
• Replace vector temporaries with scalars

• Answer: Yes, such source changes can help for some compilers
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Timing Results 
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A64 – A64FX
CLX – Cascade Lake
ICE – Ice Lake
ROM – AMD Rome 



Conclusions 

Los Alamos National Laboratory

• Pagosa performance is dependent on the compiler ability to: 
• Vectorize array-syntax well
• Loop-fusion of array-syntax statements
• Loop-collapse
• CPU Vendor compiler specific optimizations

• A node of Apollo 80 with A64FX socket performed:
• Almost 2x faster built with CCE or Fujitsu compared to ARM compiler
• Better than a node of Xeon Cascade Lake
• Slightly worse than a node of Xeon Ice Lake
• Worse than a node of AMD Rome probably because of core-count 

disadvantage and Rome’s large L3 cache
• Making selected source changes can help compilers
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Next Steps

Los Alamos National Laboratory

• More detailed investigations of Fujitsu compiler capabilities:
• Investigate use of loop fission for compute intensive loops
• Investigate performance impact of software pipeliner

• Investigate performance of an ALE application on A64FX
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